Title:

TET5100 Applied Electromagnetics in Power Engineering

Credit value:

7.5 ECTS

Mandatory/Optional:

Mandatory

Semester:

3

Lecturer/s:

Prof. Arne Nysveen, Prof. Robert Nilssen

University:

NTNU-Norwegian University of Science and Technology

Department:

Department of Electric Power Engineering

<u>Rationale:</u>

Modeling and dimensioning of electric power installations and apparatus requires physical understanding and knowledge of mathematical modeling. In order to calculate stresses and parameters that characterize power systems or electrical apparatus, a sound knowledge of fundamental electromagnetic field theory is essential. A continuation of electromagnetic theory with emphasis on adaption and use in electric power engineering is needed for applying static approaches when analyzing steady-state phenomena in electrical apparatus and systems. This course caters to this rationale by introducing numerical calculation tools based on Finite Element Method for analysis of electric and magnetic fields.

Objectives:

Having completed the course, the candidate should have knowledge on static and dynamic fields from:

- Maxwell's equations and how to make relevant simplifications for analysis in electrical power engineering

- Use of modern numerical software tools to solve practical problems in electric power engineering

- Recognizing phenomena related to practical problem solving and selection of the right model and calculation tools

- Calculating parameters to be used in modeling and analysis of electric power apparatus and systems

Skills: (according to the list of skills provided)

Subject skills	REM Master Skills						
	L2.1	L2.2	L2.3	L2.4	L2.5	L2.6	L2.7
L3.1. To perform analytical and numerical analysis							
of a variety of known basic topics related to electric	х	х	х				
power apparatus and systems.							
L3.2. To use numerical calculation tools based on							
finite element method for analysis of electric and		х	х				
magnetic fields.							
L3.3. To apply relevant software to determine							
parameters and to simulate practical problems	х	х	х				
where field analysis is important.							
L3.4 To work independently and in groups					х	х	x

Teaching and learning methods:

The course methodology includes various techniques, such as:

1. Lecture format with oral and audiovisual presentations.

2. Exercises and individual assignments.

3. Possible seminars of invited speakers.

4. Semester project work with report and presentation.

The course starts with traditional lectures and exercises. Then, an introduction on use of numerical calculation tools based on Finite Element Method (FEM) for analysis of electric and magnetic fields is given. This tool is the applied to some selected practical topics where the lecture deals with theoretical and technical aspects, which are important in practical analysis and design of the given topic. In the following exercises, numerical

software is used extensively. Finally, the students works in groups on an examination-project eligible in the final grade. The teaching is largely based on numerical exercises where lecturers and tutors provide support to student groups.

Allocation of student time:

	Attendance (classroom, lab,)	Non attendance (lecture preparation, self study)
Lectures	48 hours	48 hours
Classroom practice	18 hours	10 hours
Project	18 hours	26 hours

Assessment:

The procedures for assessment of the course is as follows:

By conducting an individual project work during the semester (30% of the final grade)
By conducting a final written exam (70% of the final grade).

Note: The Assessment rules might vary from year to year. The students will be notified at the beginning of the semester of such changes.

Assessment Matrix:

Subject	Assessment method				
skills	Exam	Presentation	Project	•••	•••
L3.1.	70%		30%		
L3.2.	70%		30%		
L3.3.	70%		30%		
L3.4.			100%		

Topic 1Introduction, PDE formulation, The Finite Element MethodTopic 2Introduction to COMSOL MultiphysicsTopic 3Electric conductive field modelling: boundary conditions, equations, simplified calculationsTopic 4COMSOL examplesTopic 5Electric capacitive field modelling - COMSOL examplesTopic 6Electric capacitive field modelling - COMSOL examplesTopic 7Design issues: insulation coordinationTopic 8Modelling of dielectric problems - COMSOL examplesTopic 9Electric system parameters: analytical modelling - capacitance in power transmission linesTopic 10Matab computationsTopic 11Electric system parameters: analytical modelling - capacitance in power cablesTopic 12Three-phase cables with shielding - COMSOL examplesTopic 13Magnetostatics: permanent magnets, energy calculation, inductanceTopic 14Maxwell tensor forces calculation in COMSOLTopic 15Design issues in magnetostatics: magnetic field amplifications, saturation, losses, magnetic and electric loadingTopic 16COMSOL examplesTopic 17Dynamic magnetic fields: stationary AC modelling, skin effect, proximity effect, eddy currents, induced loss and heat motionTopic 20COMSOL examplesTopic 21Inductive parameters: cables and transmission lines, analytical and numerical solutionTopic 22COMSOL examplesTopic 23Multiphysics	Programme:		
Topic 1Introduction, PDE formulation, The Finite Element MethodTopic 2Introduction to COMSOL MultiphysicsTopic 3Electric conductive field modelling: boundary conditions, equations, simplified calculationsTopic 4COMSOL examplesTopic 5Electric capacitive field modelling - COMSOL examplesTopic 7Design issues: insulation coordinationTopic 9Electric system parameters: analytical modelling - capacitance in power transmission linesTopic 10Matlab computationsTopic 11Electric system parameters: analytical modelling - capacitance in power cablesTopic 12Three-phase cables with shielding - COMSOL examplesTopic 13Magnetostatics: permanent magnets, energy calculation, inductanceTopic 14Maxwell tensor forces calculation in COMSOLTopic 15Design issues in magnetostatics: magnetic field amplifications, saturation, losses, magnetic and electric loadingTopic 16COMSOL examplesTopic 17Dynamic magnetic fields: stationary AC modelling, skin effect, proximity effect, eddy currents, induced loss and heat motionTopic 20COMSOL examplesTopic 21Inductive parameters: cables and transmission lines, analytical and numerical solutionTopic 22COMSOL examplesTopic 23Multiphysics			
Topic 2Introduction to COMSOL MultiphysicsTopic 3Electric conductive field modelling: boundary conditions, equations, simplified calculationsTopic 4COMSOL examplesTopic 5Electric capacitive field modellingTopic 6Electric capacitive field modelling - COMSOL examplesTopic 7Design issues: insulation coordinationTopic 9Electric system parameters: analytical modelling - capacitance in power transmission linesTopic 10Matlab computationsTopic 11Electric system parameters: analytical modelling - capacitance in power cablesTopic 12Three-phase cables with shielding - COMSOL examplesTopic 13Magnetostatics: permanent magnets, energy calculation, inductanceTopic 14Maxwell tensor forces calculation in COMSOLTopic 15Design issues in magnetostatics: magnetic field amplifications, saturation, losses, magnetic and electric loadingTopic 16COMSOL examplesTopic 17Dynamic magnetic fields: stationary AC modelling, skin effect, proximity effect, eddy currents, induced loss and heat motionTopic 20COMSOL examplesTopic 21Inductive parameters: cables and transmission lines, analytical and numerical solutionTopic 22COMSOL examplesTopic 23MultiphysicsTopic 24Revision	Topic 1	Introduction, PDE formulation, The Finite Element Method	
Topic 3Electric conductive field modelling: boundary conditions, equations, simplified calculationsTopic 4COMSOL examplesTopic 5Electric capacitive field modellingTopic 6Electric capacitive field modelling - COMSOL examplesTopic 7Design issues: insulation coordinationTopic 8Modelling of dielectric problems - COMSOL examplesTopic 10Matlab computationsTopic 11Electric system parameters: analytical modelling - capacitance in power transmission linesTopic 12Three-phase cables with shielding - COMSOL examplesTopic 13Magnetostatics: permanent magnets, energy calculation, inductanceTopic 14Maxwell tensor forces calculation in COMSOLTopic 15Design issues in magnetostatics: magnetic field amplifications, saturation, losses, magnetic and electric loadingTopic 16COMSOL examplesTopic 17Dynamic magnetic fields: stationary AC modelling, skin effect, proximity effect, eddy currents, induced loss and heat motionTopic 20COMSOL examplesTopic 21Inductive parameters: cables and transmission lines, analytical and numerical solutionTopic 21Inductive parameters: cables and transmission lines, analytical and numerical solutionTopic 23MultiphysicsTopic 24Revision	Topic 2	Introduction to COMSOL Multiphysics	
Topic 4COMSOL examplesTopic 5Electric capacitive field modellingTopic 6Electric capacitive field modelling - COMSOL examplesTopic 7Design issues: insulation coordinationTopic 8Modelling of dielectric problems - COMSOL examplesTopic 9Electric system parameters: analytical modelling - capacitance in power transmission linesTopic 10Matab computationsTopic 11Electric system parameters: analytical modelling - capacitance in power cablesTopic 12Three-phase cables with shielding - COMSOL examplesTopic 13Magnetostatics: permanent magnets, energy calculation, inductanceTopic 14Maxwell tensor forces calculation in COMSOLTopic 15Design issues in magnetostatics: magnetic field amplifications, saturation, losses, magnetic and electric loadingTopic 16COMSOL examplesTopic 17Dynamic magnetic fields: stationary AC modelling, skin effect, proximity effect, eddy currents, induced loss and heat motionTopic 18COMSOL examplesTopic 20COMSOL examplesTopic 21Inductive parameters: cables and transmission lines, analytical and numerical solutionTopic 22COMSOL examplesTopic 23MultiphysicsTopic 24Revision	Topic 3	Electric conductive field modelling: boundary conditions, equations, simplified calculations	
Topic 5Electric capacitive field modellingTopic 6Electric capacitive field modelling - COMSOL examplesTopic 7Design issues: insulation coordinationTopic 8Modelling of dielectric problems - COMSOL examplesTopic 9Electric system parameters: analytical modelling - capacitance in power transmission linesTopic 10Matlab computationsTopic 11Electric system parameters: analytical modelling - capacitance in power cablesTopic 12Three-phase cables with shielding - COMSOL examplesTopic 13Magnetostatics: permanent magnets, energy calculation, inductanceTopic 14Maxwell tensor forces calculation in COMSOLTopic 15Design issues in magnetostatics: magnetic field amplifications, saturation, losses, magnetic and electric loadingTopic 16COMSOL examplesTopic 17Dynamic magnetic fields: stationary AC modelling, skin effect, proximity effect, eddy currents, induced loss and heat motionTopic 18COMSOL examplesTopic 20COMSOL examplesTopic 21Inductive parameters: cables and transmission lines, analytical and numerical solutionTopic 22COMSOL examplesTopic 23MultiphysicsTopic 24Revision	Topic 4	COMSOL examples	
Topic 6Electric capacitive field modelling - COMSOL examplesTopic 7Design issues: insulation coordinationTopic 8Modelling of dielectric problems - COMSOL examplesTopic 9Electric system parameters: analytical modelling - capacitance in power transmission linesTopic 10Matlab computationsTopic 11Electric system parameters: analytical modelling - capacitance in power cablesTopic 12Three-phase cables with shielding - COMSOL examplesTopic 13Magnetostatics: permanent magnets, energy calculation, inductanceTopic 14Maxwell tensor forces calculation in COMSOLTopic 15Design issues in magnetostatics: magnetic field amplifications, saturation, losses, magnetic and electric loadingTopic 16COMSOL examplesTopic 17Dynamic magnetic fields: stationary AC modelling, skin effect, proximity effect, eddy currents, induced loss and heat motionTopic 18COMSOL examplesTopic 20COMSOL examplesTopic 21Inductive parameters: cables and transmission lines, analytical and numerical solutionTopic 22COMSOL examplesTopic 23MultiphysicsTopic 24Revision	Topic 5	Electric capacitive field modelling	
Topic 7Design issues: insulation coordinationTopic 8Modelling of dielectric problems - COMSOL examplesTopic 9Electric system parameters: analytical modelling - capacitance in power transmission linesTopic 10Matlab computationsTopic 11Electric system parameters: analytical modelling - capacitance in power cablesTopic 12Three-phase cables with shielding - COMSOL examplesTopic 13Magnetostatics: permanent magnets, energy calculation, inductanceTopic 14Maxwell tensor forces calculation in COMSOLTopic 15Design issues in magnetostatics: magnetic field amplifications, saturation, losses, magnetic and electric loadingTopic 16COMSOL examplesTopic 17Dynamic magnetic fields: stationary AC modelling, skin effect, proximity effect, eddy currents, induced loss and heat motionTopic 18COMSOL examplesTopic 20COMSOL examplesTopic 21Inductive parameters: cables and transmission lines, analytical and numerical solutionTopic 22COMSOL examplesTopic 23MultiphysicsTopic 24Revision	Topic 6	Electric capacitive field modelling - COMSOL examples	
Topic 8Modelling of dielectric problems - COMSOL examplesTopic 9Electric system parameters: analytical modelling - capacitance in power transmission linesTopic 10Matlab computationsTopic 11Electric system parameters: analytical modelling - capacitance in power cablesTopic 12Three-phase cables with shielding - COMSOL examplesTopic 13Magnetostatics: permanent magnets, energy calculation, inductanceTopic 14Maxwell tensor forces calculation in COMSOLTopic 15Design issues in magnetostatics: magnetic field amplifications, saturation, losses, magnetic and electric loadingTopic 16COMSOL examplesTopic 17Dynamic magnetic fields: stationary AC modelling, skin effect, proximity effect, eddy currents, induced loss and heat motionTopic 18COMSOL examplesTopic 20COMSOL examplesTopic 21Inductive parameters: cables and transmission lines, analytical and numerical solutionTopic 22COMSOL examplesTopic 23MultiphysicsTopic 24Revision	Topic 7	Design issues: insulation coordination	
Topic 9Electric system parameters: analytical modelling - capacitance in power transmission linesTopic 10Matlab computationsTopic 11Electric system parameters: analytical modelling - capacitance in power cablesTopic 12Three-phase cables with shielding - COMSOL examplesTopic 13Magnetostatics: permanent magnets, energy calculation, inductanceTopic 14Maxwell tensor forces calculation in COMSOLTopic 15Design issues in magnetostatics: magnetic field amplifications, saturation, losses, magnetic and electric loadingTopic 16COMSOL examplesTopic 17Dynamic magnetic fields: stationary AC modelling, skin effect, proximity effect, eddy currents, induced loss and heat motionTopic 18COMSOL examplesTopic 20COMSOL examplesTopic 21Inductive parameters: cables and transmission lines, analytical and numerical solutionTopic 22COMSOL examplesTopic 23MultiphysicsTopic 24Revision	Topic 8	Modelling of dielectric problems - COMSOL examples	
Topic 10Matlab computationsTopic 11Electric system parameters: analytical modelling - capacitance in power cablesTopic 12Three-phase cables with shielding - COMSOL examplesTopic 13Magnetostatics: permanent magnets, energy calculation, inductanceTopic 14Maxwell tensor forces calculation in COMSOLTopic 15Design issues in magnetostatics: magnetic field amplifications, saturation, losses, magnetic and electric loadingTopic 16COMSOL examplesTopic 17Dynamic magnetic fields: stationary AC modelling, skin effect, proximity effect, eddy currents, induced loss and heat motionTopic 18COMSOL examplesTopic 20COMSOL examplesTopic 21Inductive parameters: cables and transmission lines, analytical and numerical solutionTopic 22COMSOL examplesTopic 23MultiphysicsTopic 24Revision	Topic 9	Electric system parameters: analytical modelling - capacitance in power transmission lines	
Topic 11Electric system parameters: analytical modelling - capacitance in power cablesTopic 12Three-phase cables with shielding - COMSOL examplesTopic 13Magnetostatics: permanent magnets, energy calculation, inductanceTopic 14Maxwell tensor forces calculation in COMSOLTopic 15Design issues in magnetostatics: magnetic field amplifications, saturation, losses, magnetic and electric loadingTopic 16COMSOL examplesTopic 17Dynamic magnetic fields: stationary AC modelling, skin effect, proximity effect, eddy currents, induced loss and heat motionTopic 18COMSOL examplesTopic 20COMSOL examplesTopic 21Inductive parameters: cables and transmission lines, analytical and numerical solutionTopic 22COMSOL examplesTopic 23MultiphysicsTopic 24Revision	Topic 10	Matlab computations	
Topic 12Three-phase cables with shielding - COMSOL examplesTopic 13Magnetostatics: permanent magnets, energy calculation, inductanceTopic 14Maxwell tensor forces calculation in COMSOLTopic 15Design issues in magnetostatics: magnetic field amplifications, saturation, losses, magnetic and electric loadingTopic 16COMSOL examplesTopic 17Dynamic magnetic fields: stationary AC modelling, skin effect, proximity effect, eddy currents, induced loss and heat motionTopic 18COMSOL examplesTopic 19Modelling of ODETopic 20COMSOL examplesTopic 21Inductive parameters: cables and transmission lines, analytical and numerical solutionTopic 23MultiphysicsTopic 24Revision	Topic 11	Electric system parameters: analytical modelling - capacitance in power cables	
Topic 13Magnetostatics: permanent magnets, energy calculation, inductanceTopic 14Maxwell tensor forces calculation in COMSOLTopic 15Design issues in magnetostatics: magnetic field amplifications, saturation, losses, magnetic and electric loadingTopic 16COMSOL examplesTopic 17Dynamic magnetic fields: stationary AC modelling, skin effect, proximity effect, eddy currents, induced loss and heat motionTopic 18COMSOL examplesTopic 20COMSOL examplesTopic 21Inductive parameters: cables and transmission lines, analytical and numerical solutionTopic 22COMSOL examplesTopic 23MultiphysicsTopic 24Revision	Topic 12	Three-phase cables with shielding - COMSOL examples	
Topic 14Maxwell tensor forces calculation in COMSOLTopic 15Design issues in magnetostatics: magnetic field amplifications, saturation, losses, magnetic and electric loadingTopic 16COMSOL examplesTopic 17Dynamic magnetic fields: stationary AC modelling, skin effect, proximity effect, eddy currents, induced loss and heat motionTopic 18COMSOL examplesTopic 19Modelling of ODETopic 20COMSOL examplesTopic 21Inductive parameters: cables and transmission lines, analytical and numerical solutionTopic 22COMSOL examplesTopic 23MultiphysicsTopic 24Revision	Topic 13	Magnetostatics: permanent magnets, energy calculation, inductance	
Topic 15Design issues in magnetostatics: magnetic field amplifications, saturation, losses, magnetic and electric loadingTopic 16COMSOL examplesTopic 17Dynamic magnetic fields: stationary AC modelling, skin effect, proximity effect, eddy currents, induced loss and heat motionTopic 18COMSOL examplesTopic 19Modelling of ODETopic 20COMSOL examplesTopic 21Inductive parameters: cables and transmission lines, analytical and numerical solutionTopic 22COMSOL examplesTopic 23MultiphysicsTopic 24Revision	Topic 14	Maxwell tensor forces calculation in COMSOL	
Topic 16COMSOL examplesTopic 17Dynamic magnetic fields: stationary AC modelling, skin effect, proximity effect, eddy currents, induced loss and heat motionTopic 18COMSOL examplesTopic 19Modelling of ODETopic 20COMSOL examplesTopic 21Inductive parameters: cables and transmission lines, analytical and numerical solutionTopic 22COMSOL examplesTopic 23MultiphysicsTopic 24Revision	Topic 15	Design issues in magnetostatics: magnetic field amplifications, saturation, losses, magnetic and electric loading	
Topic 17Dynamic magnetic fields: stationary AC modelling, skin effect, proximity effect, eddy currents, induced loss and heat motionTopic 18COMSOL examplesTopic 19Modelling of ODETopic 20COMSOL examplesTopic 21Inductive parameters: cables and transmission lines, analytical and numerical solutionTopic 22COMSOL examplesTopic 23MultiphysicsTopic 24Revision	Topic 16	COMSOL examples	
Topic 18COMSOL examplesTopic 19Modelling of ODETopic 20COMSOL examplesTopic 21Inductive parameters: cables and transmission lines, analytical and numerical solutionTopic 22COMSOL examplesTopic 23MultiphysicsTopic 24Revision	Topic 17	Dynamic magnetic fields: stationary AC modelling, skin effect, proximity effect, eddy currents, induced loss and heat motion	
Topic 19Modelling of ODETopic 20COMSOL examplesTopic 21Inductive parameters: cables and transmission lines, analytical and numerical solutionTopic 22COMSOL examplesTopic 23MultiphysicsTopic 24Revision	Topic 18	COMSOL examples	
Topic 20COMSOL examplesTopic 21Inductive parameters: cables and transmission lines, analytical and numerical solutionTopic 22COMSOL examplesTopic 23MultiphysicsTopic 24Revision	Topic 19	Modelling of ODE	
Topic 21Inductive parameters: cables and transmission lines, analytical and numerical solutionTopic 22COMSOL examplesTopic 23MultiphysicsTopic 24Revision	Topic 20	COMSOL examples	
Topic 22COMSOL examplesTopic 23MultiphysicsTopic 24Revision	Topic 21	Inductive parameters: cables and transmission lines, analytical and numerical solution	
Topic 23MultiphysicsTopic 24Revision	Topic 22	COMSOL examples	
Topic 24 Revision	Topic 23	Multiphysics	
	Topic 24	Revision	

Resources:

Classroom, Blackboard, laptop, projector, audio, computer room.

All the material necessary to follow the course is facilitated by the course instructors during the course, through 'eLS' (e-Learning System) platform (known as 'Blackboard').

Bibliography:

Compendium: "Power Line Parameters", Arne Nysveen, NTNU

Compendium: "Electromagnetics in Power Engineering", Robert Nilssen, NTNU

Notaros, "Electromagnetics". Pearson Education, 2010.

Young & Freedman, "University Physics. Pearson Education". Ed. 12 or Ed. 13. Chap 21-31.

+ handouts distributed by the lecturer during the semester

Further comments:

Deviations: Since the teaching and learning processes are adaptive, there may arise minor deviations in the course schedule and content.