Title:
NM946 Inspection and Survey
Credit value:
5 ECTS
Mandatory/Optional:
Compulsory
Semester:
1
Lecturer/s:
Julia Race
University:
University of Strathclyde
Department:
Naval Architecture, Ocean and Marine Engineering
Rationale:

This module aims to provide understanding of threats to offshore structures, the effect of defects and appropriate methods for detection. The majority of the course assesses the threat of corrosion in a marine environment and describes measures for the control of corrosion. In addition, t is also critical to understand the basics of fatigue analysis and fracture mechanics approaches to defect assessment. These aspects are provided in this module along an appreciation of how material properties and assumptions about properties affect the life cycle and inspection of marine structures and how to assess 'fitness for purpose'.

Objectives:

- 1. To provide students with an insight into 'marine' materials, their properties, failure and protection and an understanding of how their degradation affects the life-cycle of marine and offshore structures.
- 2. To engender an understanding of the role of inspection and the assessment of inspection results.
- 3. To provide knowledge of the major threats to marine asset integrity including corrosion and its control for equipment constructed in a wide range of materials, fatigue and fracture of steels.

<u>Skills:</u> (according to the list of skills provided)

Subject skills	REM Master Skills						
	L2.1	L2.2	L2.3	L2.4	L2.5	L2.6	L2.7
L3.1. Have gained a basic understanding of threats	X	Х	Х			Х	Х
to offshore structures, the effect of defects and							
appropriate methods for detection							
L3.2. Understand the basics of fatigue analysis	X	Х				Х	Х
and fracture mechanics approaches to defect							
assessment.							
L3.3. Appreciate how material properties and	X	Х	Х			Х	Х
assumptions about properties affect the life cycle							
and inspection of marine structures and how to							
assess 'fitness for purpose'.							
L3.4. Recognise the various way in which the	Х	Х				Х	Х
marine environment can induce serious							
deterioration of structures by different corrosion							
processes							
L3.5. Understand the basics of electro-chemical	Х	Х				Х	Х

corrosion of metals					
L3.6. Have a critical appreciation of the techniques of control of corrosion in marine	Х	Х		Х	Х
engineering equipment					

Teaching and learning methods:

The teaching method is based on a series of lectures where the lecturer explains the main concepts through power point presentations and worked out examples on the board. The students are also presented with a variety of issues of practical nature during the lectures. To support the learning process part of the modules covers tutorial-like sessions where the students are put to the challenge of working together and addressing problems of slight higher technical complexity

Allocation of student time:

	Attendance (classroom, lab,)	Non attendance (lecture preparation, self study)
Lectures	16 hours	16 hours
Tutorial	4 hours	4 hours
Assignment	30 hours	30 hours
Private study		20 hours

Assessment:

The written examination tests acquisition of a clear general knowledge and understanding of the subject plus the ability to think and analyse a problem quickly, to select from and to apply both the general and detailed knowledge of aspects of the subject. The exam also assesses problem solving skills, the ability to work unaided and to communicate clearly and concisely in writing.

The tutorial calculations relevant to the assessment of fracture and fatigue consolidates the students' knowledge and understanding half way through the semester and enables them to obtain feedback. Feedback will also be provided through example calculations on MyPlace

The tutorial sessions are supervised activities in which the students apply the knowledge that they gain during formal lectures and private study to conduct the calculations outlined in the syllabus. During the tutorial sessions students are able to interact with the lecturer and obtain feedback on their calculations.

Assessment Matrix:

Subject		Assessment method				
skills	Exam	Presentation	Home work	Report	•••	
L3.1.	100%					
L3.2.	100%					
L3.3.	100%					
L3.4.	100%					
L3.5.	100%					
L3.6.	100%					

Programm	<u>e:</u>
Lesson 1	Course introduction – Fracture
	Introduction to the module
	Fracture mechanics and crack growth Eailure Assessment Diagrams
	• Failure Assessment Diagrams
	Distribution (2 h theory)
Lesson 2	Marine corrosion
	 Basic aspects of corrosion relevant to the marine environment
	 Features of aqueous corrosion
	Factors determining corrosion rates
	Distribution (2 h theory $+ 1$ h tutorial)
Lesson 3	Aspects of seawater characteristics relevant to corrosion
	- Coovertor characteristic o including
	 Dissolved gases
	 Organic material
	 Water depth
	Distribution (2 h theory)
Lesson 4	General surface corrosion
	Anodic and cathodic reactions and influencing factors
	Corrosion in ships Corrosion in all and gas production systems
	• Conosion in on and gas production systems
	Distribution (2 h theory + 1 h tutorial)
Lesson 5	Fatigue
	Eatique analysis
	\circ Cycle counting
	 S-N fatigue assessment
	Distribution (2 h th com)
Lesson 6	Localised corrosion
	Localised corrosion mechanisms including:
	• Galvanic corrosion
	\circ Intergranular corrosion
	 Microbiologically influenced corrosion
	 Stray current corrosion
	 Erosion/corrosion and cavitation
	o SCC and hydrogen emprittlement
	Distribution (5 h theory)
Lesson 7	Inspection methodologies

		г
	Introduction to weld defects	ĺ
	- Inspection techniques for different defects	ĺ
	Inspection techniques for different defects	ĺ
		ĺ
	Distribution (3 h theory)	
Lesson 8	Tutorial session	
		1
	Distribution (2 h tutorial)	
1		
Resources:		
Classrooms	Rlackhoard lanton projector audio computer room laboratory security issues	
A classroo	om, equipped with a blackboard and audio-visual resources (laptop/computer with	

Matlab/Simulink installed and Internet connection + projector), for the lectures. A blackboard and a projector may be sufficient if the lecturer uses her/his own laptop.

Bibliography:

Basic textbooks, deepening bibliography, Internet addresses of interest, specific journals, etc...

Literature package is provided in Myplace.

Further comments: